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Nonlinear alternating current responses of graded materials
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When a composite of nonlinear particles suspended in a host medium is subjected to a sinusoidal electric
field, the electrical response in the composite will generally consist of alternating clacerields at fre-
quencies of higher-order harmonics. The situation becomes more interesting when the suspended particles are
graded, with a spatial variation in the dielectric properties. The local electric field inside the graded particles
can be calculated by the differential effective dipole approximation, which agrees very well with a first-
principles approach. In this work, a nonlinear differential effective dipole approximation and a perturbation
expansion method have been employed to investigate the effect of gradation on the nonlinear ac responses of
these composites. The results showed that the fundamental and third-harmonic ac responses are sensitive to the
dielectric-constant and/or nonlinear-susceptibility gradation profiles within the particles. Thus, by measuring
the ac responses of the graded composites, it is possible to perform a real-time monitoring of the fabrication
process of the gradation profiles within the graded particles.
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[. INTRODUCTION polarization under the application of a sinusoidal electric
field [15]. The strength of the nonlinear polarization should
Graded materials with spatial gradients in their structurede reflected in the magnitude of the harmonics. For the pur-
[1] are abundant in Nature, and have received much attentiopose of extracting such harmonics, the perturbation expan-
as one of the advanced inhomogeneous composite materigion [12—14 and self-consistent method43,1¢ can be
in diverse engineering applicatiofig]. These materials can used.
be made to realize quite different, and thus, to some extent, In this work, based on the NDEDA, we shall investigate
more useful and interesting, physical properties from the hothe effect of gradatiotinhomogeneity inside the particles
mogeneous materials. For graded materials, the tradition&inclusions on the ac responses of the graded composite by
theories[3] for homogeneous materials do not work any making use of a perturbation expansion methdd|. Here,
longer. Recently, we presented a first-principles approacke composite under consideration is composed of linear/
[4,5] and a differential effective dipole approximatip®,7], nonlinear graded particles which are randomly embedded in
to in\/estiga’[e the dielectric properties of the graded materia linear/nonlinear host medium in the dilute limit. To this
als. To our interest, the two methods have been demonstrat&itd, it is shown that the fundamental and third-order har-
to be in excellent agreement with each otf# In the case  Monic ac responses are sensitive to the dielectric-congant
of graded materials, the problem will become more compli-nonlinear-susceptibilitygradation profile within the particle.
cated by the presence of nonlinearity inside them. FortuThus, by measuring the ac responses of the graded compos-
nately, for deriving the equivalent nonlinear susceptibility ofites, it is possible to perform a real-time monitoring of the
graded particles, we have succeeded in putting forth a norfabrication process of the gradation profiles within graded
linear differential effective dipole approximatidhNDEDA)  particles.
[8]. As expected, this NDEDA has also been demonstrated to This paper is organized as follows. In Sec. II, we shall
be in excellent agreement with a first-principles approactpresent the formalism, which is followed by the numerical
[8]. results in Sec. Ill. In Sec. IV, the discussion and conclusion
In addition, the finite-frequency response of nonlinearWill be given.
composite materials has attracted much attention both in re-
search and industrial applications during the last two decades Il. FORMALISM
[9]. When a composite with linear/nonlinear particles embed- . . . . .
ded in a linear/nonlinear host medium is subjected to a sinu- Let us consider nonlinear graded sphenEaI particles with
soidal electric field, the electrical response in the compositéadius a and dielectric gradation profilee;(r)=e;(r)
will generally consist of alternating curredd) fields at fre-  +xa1(r)E4? inside it, being embedded in a nonlinear host
quencies of higher-order harmonici0—14. In fact, a con- medium of dielectric constant,= e,+ x,E,?, in the pres-
venient method of probing the nonlinear characteristics oence of a uniform external electric fiekey along thez axis.
the composite is to measure the harmonics of the nonlineafere €,(r) or €, [ x1(r) or x,] denotes the corresponding
linear dielectric constantnonlinear susceptibility E; and
E, stand for the local electric field inside the particles and
*Present address: Max Planck Institute for Polymer Researctthe host medium, respectively. Note that both gradation pro-
Ackermannweg 10, 55128 Mainz, Germany. files e1(r) and y4(r) are radial functions where <a.
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Throughout the paper, we shall focus on the case of weak 1.0 , .

T T
nonlinearity only (that is, x1(r)E;?<e(r) and x,E,? © n=0.1 (DEDA)
<e,), as well as the low concentration limit. ~a n=0.1 (Exact)

~ ¢ n=1.0 (DEDA)

) ) ) ) ) o~ “ - - - n=1.0 (Exact)

A. Comparlson. between g dlﬁereqtlal effective dipole B - s n=3.0 (DEDA)
approximation and a first-principles approach -~ ~ n=3.0 (Exact)

Recently, we put forth a DEDAdifferential effective di- 08 [ .

pole approximation[6,7] for calculating the equivalent di-
electric constang,(r) [8] of the spherical graded particle of g"

radiusr. This DEDA receives the form g
_ - &)
deq (1) _ [el(r)—el(r)][el(r)+261(r)]_ o 06
dr rey(r)

Note that Eq.(1) is just the Tartar formula, derived for as-
semblages of spheres with varying radial and tangential con-
ductivities [1]. In the original derivation of the Tartar for-
mula [1], Tartar considered anisotropic spherical graded 0.4 , ! ‘ !
particles where the conductivity in the radial directighus "og 3.5 4.5
called “radial conductivity”) is different from that in the Ale

tangential directior(thus called “tangential conductivity’ 0

It is worth noting that, in treating the composite of interest, k|G, 1. For a power-law gradation profile(r)=A(r/a)": a
the CaICUIation Of ConductiVitieS iS mathematica”y the SamQ:omparison between the approximate reiuﬂbtained from the
as that of dielectric constants. So far, the equivaleyit DEDA, Eg. (2)] and the exact solutiorjpredicted by a first-
=a) for the whole graded particle can be calculated, at leasgrinciples approach, E¢5)], for the linear electric field;, "™ plot-
numerically, by solving the differential equatifBq. (1)], as  ted as a function oA for variousn. Parametersy;(0)=0.1¢,, D
long ase;(r) (the dielectric-constant gradation profils ~ =0.-l€, andx,=0.

given. Oncee,(r =a) is determined, we can readily take one _ .

step forward to obtain the volume average of the linear localE1"™ ()= 71Eor > H{[(s— 1)cosé sin 6 cosp]x+[(s—1)
electric field inside the particles as

X cosfsingsingly+[(s—1)cogo+1]z}, (4)

<E1(Iin) - 3e; Eo ) whereX, ¥, andz are the unit vectors along y, andz axes,
e(r=a)+2e, ' respectively. So far, it is straightforward to obtain the volume

average of the local electric field inside the particles,

where(- - -) denotes the volume average. Hence, the DEDA

[Eq. (1)] offers a convenient way to obtain the local electric (E,(imy = lf E,M(r)adv (5)

field [Eq. (2)]. It is worth remarking that the DEDPEQ. (1)] ! V)y ! '

is valid for arbitrary gradation profiles.

To show the correctness of E(), we shall alternatively WhereV is the volume of the spherical particles.

present a first-principles approach for calculating the local In Fig. 1, we shall numerically compare E(®) (local

electric field inside the particle. For this purpose, let us takdield predicted by the DEDAwith Eg. (5) (local field ob-

the power-law gradation profifes(r)=A(r/a)"] as a model. tained from the first-principles approgch

For this profile, the potential within the graded particle can

be given by solving the electrostatic equatiofV B. Nonlinear polarization and its higher harmonics

Le(r)VO]=0 [4], 1. Nonlinear differential effective dipole approximation

®4(r)=—n,Egrécos, r<a, (3) In a recent worl{ 8], we have established a NDEDA by

deriving a differential equation for the equivalent nonlinear

where the coefficieny, is determined by performing appro- susceptibility?l(r), namely,

priate boundary conditions,

dyi(r) — |4dey(r)/dr| — 8y-3
32 a o xalr 26+—?(r) +xa(r)—
M= sAT2¢, 2
— 4
_ 3x1(r) [ €1(r)+2€4(r)

ands=[9+2n+n?—(1+n)]/2. Based on the relation be- + 5r 3eq(r)

tween the linear local electric field and the potential !
[E."™(r)=—Vd4(r)], we have X (54 36x%+ 16x3+ 24x%), (6)
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where perturbation expansion method is applicable to weak nonlin-
L . earity only, limited by the convergence of the series expan-
an-an o [an-ellam-am]  sion. o |
() +2ey(r) (1) ex(r)+26,] . Let us start from the dilute-limit expression for the effec-

tive linear dielectric constantef) of the system of interest,
Similarly, x,(r =a) can be obtained, at least numerically, by "amely, Eq(9), wherey; = x,=0.

solving Eq. (6), once the initial conditions, namely;(r Next, we obtain the linear local electric fieldg,*) and
=0) andy,(r=0) are given. (E5?), respectively:
In what follows, we can investigate the nonlinear ac re- )
sponse of the graded spherical particle by seeing it as a ho- »_ Eo Jee __ —
: 0 Hr— : <E1 >—_:—F(61,62,f,E0), (12)
mogeneous particle having the constitutive relation between f e,
the displacement and the local electric figld],
_ _ ~ 2 E02 deg  —
D;=ey(r=a)E;+ x,(r=a)E;’E;=€,(r=a)E,, (Ez >_ﬁa_62:G(61162af1E0)- (13

where e;(r=a) and y,(r=a) are determined by Eq$l)  In view of the existence of nonlinearity inside the two com-
and (6), respectively. For the sake of convenience, we shalponents, we readily obtain the following local electric fields

=a) by x4, if there are no special instructions. -
' (E12)=F(€y,6,.f,E), (14)
2. Nonlinear ac responses -
~ ~
If we apply a sinusoidal electric field like (E2")=G(e1,€2,f,E0). (19
Eo(t) =Egsin(wt), (7) For the below series expansions, we will ta?§=:l

+x1E1%~ €1+ x1(E1%) and'e;= €5+ x2E 2~ €2+ x2o E?),

the local electric field\/(Ef) and the induced dipole mo- Egs.(14) and(15), where(- - -) denotes the volume aver-

ment age of- - -. Let us expand the local electric fie{é;%) and
-~ (E,?) into a Taylor expansion, taking,(E;%) and y(E,?)
P=e.ad €1~ € E, 8 as the perturbative quantities:
61+ 2;2 P
N =y - 2
will depend on time sinusoidally, t0o. Here the effective di- (1)~ F(€1.€2,f,E0)+ = Fler,e2,fBo)fc o xa(Er)
electric constant of the systeragj is given by the following !
dilute-limit expression: 9 _
- +aTF(61162vf!E0)|;2:62X2<E22>+"'1 (16)
~ ~ ~ €1 € €2
€= €+ 3ef ——, 9
€1+ 2€ — J - ~ _
s (Ex2)=G(e1.€.f,Eq)+ — Gler, . f.Eo)5 o xa(Ea?)
wheref is the volume fraction of the particles. By virtue of dey
the inversion symmetry, the local electric field is a superpo- 5
sition of odd-order harmonics such that +76G(:1 ,~62,f,Eo)|22=52X2<Ezz>+ . (17)
WED=E, sin(wt)+Es,sin3wt)+---.  (10) 2
. s 2 .
Similarly, the induced dipole moment contains harmonicsﬁ%(;p;gg the lowest orders of,(E,), we can rewrite Eq.
like
- E.2)=h,E2+ (hy+hg)Ep?, (18
P=p,Sin(wt)+ Pa,Sin(3wt) + - - . (11) (B =hiBo™+ (hatha)Eo
) o ~ where
These harmonics coefficients can be extracted from the time
dependence of the solution fE;?) andp. A 9¢,? 162¢,%y,
1:_—2, 2: - _—5,
3. Analytic solutions for the nonlinear ac responses (€11 2€,) (€1+2€,)
In what follows, we will perform a perturbation expansion 18e. 143f) e+ (4—6F) e e+ (4—6F)e,2
method to extract the third harmonics of the local electric h,= €axal( )& (_ )6262 ( e’
field and the induced dipole moment. It is known that the (1-p)(e1t+2e7)
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Because of the time dependence of the electric fiElgl Similarly, based on Eq8), we obtain the induced dipole
(7)], we can take one step forward to obtain the local electriomoment in terms of the harmonicg ( and ps,,),
field in terms of the harmonicsE(, andE,,,),
plad=(p,/a%)sin(wt)+(ps,/a)sinBwt), (22)

WE?)=E,sin(wt) + Ez,sin(3wt), (19
where
where
3
la3=k,Eq+ = (Kot kg) Eo3 (23
3 hythg Pol@ = aE0™ 3 (o™ Hs R0
E,=VhiEo+ o Eo®, 20
\/_l 0 8 \/h—j_ 0 ( ) 1
o1a3= = = (ky+kg)Eg3, 24
c 1h2+h3E3 (21 : 4( T .
30- T q 0 -
8 h, with

N _3e’hixaler+6fer+(2-6f)ey)
C et (e1+2¢)°

_iel(1+30)e®~ 18f e’ 3(2- 3f) e16,°— 2(2—3f) &;°]
(e1+26)°

ks

In the above derivation, we have used an identity¥(sit)  of graded spherical particles by using diffusion, the dielectric
=(3/4)sint)—(1/4) sin(3wt). constant at the center;(0) may vary slightly while that at
the grain boundary can change substantially.
For a linear gradation profilee;(r)=¢€,(0)+C(r/a)],

. NUMERICAL RESULTS Fig. 3 shows the harmonics as a function®ffor various

For numerical calculations, we take/(r)=x4(0) 0.8 ‘ 0.08 .
+D(r/a), and other parameters: volume fractids 0.09, L — n=01 |
external field strengthE,=1, linear part of host dielectric al \\\\\l\'j e i N
constante,=1. T~ N

The validation of using the DEDA is shown in Fig. 1. In . - AN
this figure, we investigate the linear local electric field by %0'6 i ’ % 004 Sl i
using a power-law gradation profile inside the particles, in an T~
attempt to compare the DEDA with the first-principles ap- 95T i
proach. As expected, an excellent agree_ment .is (_jemonstrate @ (b) el
between the DEDA{EqI..(Z)].apd the flrst-_prlnmples ap- 04 = 5 45 000~ 35 w
proach[Eq. (5)]. In addition, it is worth noting that, for a Ale, A,
linear gradation profile within the graded particles, the first- 0.00 ‘
principles approach holds as wdl], and the excellent 06 L i ERPTEEEE
agreement between the two methods can also be fpdihd »
(figure not shown hebe I 001 T

Next, we discuss a power-law gradation profile(r) g s ///
=A(r/a)"]; see Fig. 2. In this figure, the harmonics of local Qa P % Pre
electric field and the induced dipole moment are investigated = g2 [ - ~~ J& =002 7 i
as a function ofA for variousn. In this case, increasing (or -7
decreasing) leads to increasing; (namely, the equivalent oo O ‘ 003 @ ‘
dielectric constant of the graded particle under consideration 25 35 45 25 85 45

. . . . . Ale Ale,

and in turn yields a decreasing local electric field inside the ° ¥
particle. Thus, either an increaseAror a decrease in leads FIG. 2. For a power-law gradation profilg(r)=A(r/a)": (a)
to the weakening third-order harmonicEy(, and ps,), @S  fundamental andb) third harmonics of the local electric field and
displayed in Fig. 2. (c) fundamental andd) third harmonics of the induced dipole mo-

The x axes of Figs. 3 and 4 represent the sl¢fe of a  ment, plotted as a function d, for variousn. Parametersy;(0)
linear gradation profile. It is because during the fabrication=0.1¢,, D=0.1¢,, andx,=0.
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FIG. 3. For the linear gradation profileei(r)=¢€1(0)
+C(r/a): (8 fundamental andb) third harmonics of the local
electric field and(c) fundamental andd) third harmonics of the
induced dipole moment, plotted as a function @f for various
€,(0). Parametersy,(0)=0.1¢y, D=0.1¢y, and y,=0.

€1(0). Inthis case, increasinG or €,(0) yields an increas-
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Figure 4 displays the effect gf, on the harmonics, for a
linear gradation profild €;(r)=¢€,(0)+C(r/a)]. Here, in-
creasingy, leads to an increase of the local electric field
inside the graded particle of interest. Therefore, the third-
order harmonicskKz, andp;,) increase for increasings,.

As mentioned above, as andC increase, the equivalent
dielectric constant of the particle should be increased accord-
ingly, which in turn yields a decreasing local electric field,
and hence, in Figs. 2—&,, decreases for increasigor C.

On the other hand, it is found that, in Figs. 2-p4,increases
for increasingA or C which is, in fact, due to the increasing

effective dielectric constart, [refer to Eq.(8)]. Similarly,
this analysis works fairly well for understanding the effects
of nande,(0) onE, andp,,, as displayed in Figs. 2 and 3.
However, increasing, can increase not only the local elec-
tric field inside the particles, but also the effective dielectric

constante,, and hence we observe increastigandp,, , as
shown in Fig. 4.

In addition, we also discuss the effect of nonlinear-
susceptibility gradation profilego figures shown heyeFor
a linear gradation profilg,(r)=x4(0)+D(r/a), asx1(0)
(or D) increases, the third harmonics of both the electric
field and the induced dipole moment increases accordingly.
On the other hand, for a power-law gradation profgr)
=B(r/a)™, increasingB (or decreasingn) leads to increas-
ing third harmonics. To understand such results, we can
again resort to the above analysis on the effect of the relevant
parameters on the local field as well as the effective dielec-
tric constant.

ing ?1 and hence one obtains the decreasing local electric IV. DISCUSSION AND CONCLUSION

field. As a result, the large€ or €,(0) leads to the weaker

third-order harmonicsKz, andp;,,); see Fig. 3.
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FIG. 4. Same as Fig. 3, but for varioys. Parametersy,(0)
:O, DZO, andel(O)=360.

Here some comments are in order. We have investigated
the nonlinear ac responses of the graded material where
linear/nonlinear graded particles are randomly embedded in a
linear/nonlinear host medium in the dilute limit. In fact, the
nonlinear differential effective dipole approximation
(NDEDA,) is valid for arbitrary gradation profiles. In particu-
lar, based on the first-principles approach, the exact solution
is obtainable, not only for power-law profilésee Sec. Il A
but also for linear profilesrefer to Ref.[4]).

In this work, the dielectric constant and nonlinear suscep-
tibility of the graded particles under consideration are real,
frequency independent, and vary only in the radial direction.
We can extend our results to complex, frequency-dependent
susceptibilities. In fact, the NDEDA8] was originally de-
rived for treating complex frequency-dependent susceptibili-
ties. By using the original NDEDA, the complex frequency-
dependent susceptibilities can be studied. That allows us to
extend the present work to include an intrinsic dielectric dis-
persion in the graded particles.

As an extension, it is of particular interest to see what
happens to the nonlinear ac responses of graded particles in
anisotropic structures, like field-induced electrorheological
fluids. In doing so, we can make use of the anisotropic
Maxwell-Garnett approximatiorf13], which allows us to
calculate the effective dielectric constant, both parallel and
perpendicular to the anisotropic axis. For details, please refer
to Ref.[13].
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To sum up, based on our recently established NDEDA, wehe graded particles, so that one can monitor the gradation
have investigated the nonlinear ac responses of a composipgofilesin situ.
with linear/nonlinear graded spherical particles embedded in
a linear/nonlinear host medium, and found the fundamental ACKNOWLEDGMENTS
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