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Nonlinear alternating current responses of graded materials
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When a composite of nonlinear particles suspended in a host medium is subjected to a sinusoidal electric
field, the electrical response in the composite will generally consist of alternating current~ac! fields at fre-
quencies of higher-order harmonics. The situation becomes more interesting when the suspended particles are
graded, with a spatial variation in the dielectric properties. The local electric field inside the graded particles
can be calculated by the differential effective dipole approximation, which agrees very well with a first-
principles approach. In this work, a nonlinear differential effective dipole approximation and a perturbation
expansion method have been employed to investigate the effect of gradation on the nonlinear ac responses of
these composites. The results showed that the fundamental and third-harmonic ac responses are sensitive to the
dielectric-constant and/or nonlinear-susceptibility gradation profiles within the particles. Thus, by measuring
the ac responses of the graded composites, it is possible to perform a real-time monitoring of the fabrication
process of the gradation profiles within the graded particles.
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I. INTRODUCTION

Graded materials with spatial gradients in their struct
@1# are abundant in Nature, and have received much atten
as one of the advanced inhomogeneous composite mate
in diverse engineering applications@2#. These materials can
be made to realize quite different, and thus, to some ext
more useful and interesting, physical properties from the
mogeneous materials. For graded materials, the traditi
theories @3# for homogeneous materials do not work a
longer. Recently, we presented a first-principles appro
@4,5# and a differential effective dipole approximation@6,7#,
to investigate the dielectric properties of the graded mat
als. To our interest, the two methods have been demonstr
to be in excellent agreement with each other@4#. In the case
of graded materials, the problem will become more com
cated by the presence of nonlinearity inside them. Fo
nately, for deriving the equivalent nonlinear susceptibility
graded particles, we have succeeded in putting forth a n
linear differential effective dipole approximation~NDEDA!
@8#. As expected, this NDEDA has also been demonstrate
be in excellent agreement with a first-principles approa
@8#.

In addition, the finite-frequency response of nonline
composite materials has attracted much attention both in
search and industrial applications during the last two deca
@9#. When a composite with linear/nonlinear particles emb
ded in a linear/nonlinear host medium is subjected to a s
soidal electric field, the electrical response in the compo
will generally consist of alternating current~ac! fields at fre-
quencies of higher-order harmonics@10–14#. In fact, a con-
venient method of probing the nonlinear characteristics
the composite is to measure the harmonics of the nonlin

*Present address: Max Planck Institute for Polymer Resea
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polarization under the application of a sinusoidal elect
field @15#. The strength of the nonlinear polarization shou
be reflected in the magnitude of the harmonics. For the p
pose of extracting such harmonics, the perturbation exp
sion @12–14# and self-consistent methods@13,16# can be
used.

In this work, based on the NDEDA, we shall investiga
the effect of gradation~inhomogeneity! inside the particles
~inclusions! on the ac responses of the graded composite
making use of a perturbation expansion method@17#. Here,
the composite under consideration is composed of line
nonlinear graded particles which are randomly embedde
a linear/nonlinear host medium in the dilute limit. To th
end, it is shown that the fundamental and third-order h
monic ac responses are sensitive to the dielectric-constan~or
nonlinear-susceptibility! gradation profile within the particle
Thus, by measuring the ac responses of the graded com
ites, it is possible to perform a real-time monitoring of th
fabrication process of the gradation profiles within grad
particles.

This paper is organized as follows. In Sec. II, we sh
present the formalism, which is followed by the numeric
results in Sec. III. In Sec. IV, the discussion and conclus
will be given.

II. FORMALISM

Let us consider nonlinear graded spherical particles w
radius a and dielectric gradation profileẽ1(r )5e1(r )
1x1(r )E1

2 inside it, being embedded in a nonlinear ho
medium of dielectric constantẽ25e21x2E2

2, in the pres-
ence of a uniform external electric fieldE0 along thez axis.
Here e1(r ) or e2 @x1(r ) or x2] denotes the correspondin
linear dielectric constant~nonlinear susceptibility!, E1 and
E2 stand for the local electric field inside the particles a
the host medium, respectively. Note that both gradation p
files e1(r ) and x1(r ) are radial functions wherer ,a.

h,
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Throughout the paper, we shall focus on the case of w
nonlinearity only ~that is, x1(r )E1

2!e1(r ) and x2E2
2

!e2), as well as the low concentration limit.

A. Comparison between a differential effective dipole
approximation and a first-principles approach

Recently, we put forth a DEDA~differential effective di-
pole approximation! @6,7# for calculating the equivalent di
electric constantē1(r ) @8# of the spherical graded particle o
radiusr. This DEDA receives the form

dē1~r !

dr
5

@e1~r !2 ē1~r !#@ ē1~r !12e1~r !#

r e1~r !
. ~1!

Note that Eq.~1! is just the Tartar formula, derived for as
semblages of spheres with varying radial and tangential c
ductivities @1#. In the original derivation of the Tartar for
mula @1#, Tartar considered anisotropic spherical grad
particles where the conductivity in the radial direction~thus
called ‘‘radial conductivity’’! is different from that in the
tangential direction~thus called ‘‘tangential conductivity’’!.
It is worth noting that, in treating the composite of intere
the calculation of conductivities is mathematically the sa
as that of dielectric constants. So far, the equivalentē1(r
5a) for the whole graded particle can be calculated, at le
numerically, by solving the differential equation@Eq. ~1!#, as
long as e1(r ) ~the dielectric-constant gradation profile! is
given. Onceē1(r 5a) is determined, we can readily take on
step forward to obtain the volume average of the linear lo
electric field inside the particles as

^E1
(lin)&5

3e2

ē1~r 5a!12e2

E0 , ~2!

where^•••& denotes the volume average. Hence, the DE
@Eq. ~1!# offers a convenient way to obtain the local elect
field @Eq. ~2!#. It is worth remarking that the DEDA@Eq. ~1!#
is valid for arbitrary gradation profiles.

To show the correctness of Eq.~2!, we shall alternatively
present a first-principles approach for calculating the lo
electric field inside the particle. For this purpose, let us ta
the power-law gradation profile@e(r )5A(r /a)n# as a model.
For this profile, the potential within the graded particle c
be given by solving the electrostatic equation,“
•@e1(r )“F#50 @4#,

F1~r !52h1E0r scosu, r ,a, ~3!

where the coefficienth1 is determined by performing appro
priate boundary conditions,

h15
3a12se2

sA12e2
,

ands5@A912n1n22(11n)#/2. Based on the relation be
tween the linear local electric field and the potent
@E1

(lin) (r )52“F1(r )#, we have
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E1
(lin)~r !5h1E0r s21$@~s21!cosu sinu cosf# x̂1@~s21!

3cosu sinu sinf# ŷ1@~s21!cos2u11# ẑ%, ~4!

wherex̂, ŷ, andẑ are the unit vectors alongx, y, andz axes,
respectively. So far, it is straightforward to obtain the volum
average of the local electric field inside the particles,

^E1
(lin)&5

1

VEV
E1

(lin)~r !dV, ~5!

whereV is the volume of the spherical particles.
In Fig. 1, we shall numerically compare Eq.~2! ~local

field predicted by the DEDA! with Eq. ~5! ~local field ob-
tained from the first-principles approach!.

B. Nonlinear polarization and its higher harmonics

1. Nonlinear differential effective dipole approximation

In a recent work@8#, we have established a NDEDA b
deriving a differential equation for the equivalent nonline
susceptibilityx̄1(r ), namely,

dx̄1~r !

dr
5x̄1~r !F4dē1~r !/dr

2e21 ē1~r !
G1x̄1~r !

8y23

r

1
3x1~r !

5r
S ē1~r !12e1~r !

3e1~r !
D 4

3~5136x2116x3124x4!, ~6!

FIG. 1. For a power-law gradation profilee1(r )5A(r /a)n: a
comparison between the approximate result@obtained from the
DEDA, Eq. ~2!# and the exact solution@predicted by a first-
principles approach, Eq.~5!#, for the linear electric fieldE1

(lin) plot-
ted as a function ofA for variousn. Parameters:x1(0)50.1e0 , D
50.1e0, andx250.
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where

x5
ē1~r !2e1~r !

ē1~r !12e1~r !
and y5

@e1~r !2e2#@ ē1~r !2e1~r !#

e1~r !@ ē1~r !12e2#
.

Similarly, x̄1(r 5a) can be obtained, at least numerically,
solving Eq. ~6!, once the initial conditions, namely,e1(r
50) andx1(r 50) are given.

In what follows, we can investigate the nonlinear ac
sponse of the graded spherical particle by seeing it as a
mogeneous particle having the constitutive relation betw
the displacement and the local electric field@18#,

D15 ē1~r 5a!E11x̄1~r 5a!E1
2E1[ẽ̄1~r 5a!E1 ,

where ē1(r 5a) and x̄1(r 5a) are determined by Eqs.~1!
and ~6!, respectively. For the sake of convenience, we sh

representē1(r 5a) by ē1 , ẽ̄1(r 5a) by ẽ̄1 as well asx̄1(r
5a) by x̄1, if there are no special instructions.

2. Nonlinear ac responses

If we apply a sinusoidal electric field like

E0~ t !5E0sin~vt !, ~7!

the local electric fieldA^E1
2& and the induced dipole mo

ment

p̃5 ẽea
3

ẽ̄12 ẽ2

ẽ̄112ẽ2

E0 ~8!

will depend on time sinusoidally, too. Here the effective
electric constant of the system (ẽe) is given by the following
dilute-limit expression:

ẽe5 ẽ213ẽ2f
ẽ̄12 ẽ2

ẽ̄112ẽ2

, ~9!

wheref is the volume fraction of the particles. By virtue o
the inversion symmetry, the local electric field is a super
sition of odd-order harmonics such that

A^E1
2&5Evsin~vt !1E3vsin~3vt !1•••. ~10!

Similarly, the induced dipole moment contains harmon
like

p̃5pvsin~vt !1p3vsin~3vt !1•••. ~11!

These harmonics coefficients can be extracted from the
dependence of the solution ofA^E1

2& and p̃.

3. Analytic solutions for the nonlinear ac responses

In what follows, we will perform a perturbation expansio
method to extract the third harmonics of the local elec
field and the induced dipole moment. It is known that t
03660
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perturbation expansion method is applicable to weak non
earity only, limited by the convergence of the series exp
sion.

Let us start from the dilute-limit expression for the effe
tive linear dielectric constant (ee) of the system of interest
namely, Eq.~9!, wherex̄15x250.

Next, we obtain the linear local electric fields^E1
2& and

^E2
2&, respectively:

^E1
2&5

E0
2

f

]ee

]ē1

[F~ ē1 ,e2 , f ,E0!, ~12!

^E2
2&5

E0
2

12 f

]ee

]e2
[G~ ē1 ,e2 , f ,E0!. ~13!

In view of the existence of nonlinearity inside the two com
ponents, we readily obtain the following local electric fiel
for the nonlinear particle and host, respectively:

^E1
2&5F~ ẽ̄1 ,ẽ2 , f ,E0!, ~14!

^E2
2&5G~ ẽ̄1 ,ẽ2 , f ,E0!. ~15!

For the below series expansions, we will takeẽ̄15 ē1

1x̄1E1
2'ē11x̄1^E1

2& and ẽ25e21x2E2
2'e21x2^E2

2&,
in Eqs.~14! and~15!, where^•••& denotes the volume aver
age of•••. Let us expand the local electric field^E1

2& and

^E2
2& into a Taylor expansion, takingx̄1^E1

2& andx2^E2
2&

as the perturbative quantities:

^E1
2&5F~ ē1 ,e2 , f ,E0!1

]

]ẽ̄1

F~ ẽ̄1 ,e2 , f ,E0!u ẽ̄15 ē1
x̄1^E1

2&

1
]

]ẽ2

F~ ē1 ,ẽ2 , f ,E0!u ẽ25e2
x2^E2

2&1•••, ~16!

^E2
2&5G~ ē1 ,e2 , f ,E0!1

]

]ẽ̄1

G~ ẽ̄1 ,e2 , f ,E0!u ẽ̄15 ē1
x̄1^E1

2&

1
]

]ẽ2

G~ ē1 ,ẽ2 , f ,E0!u ẽ25e2
x2^E2

2&1•••. ~17!

Keeping the lowest orders ofx̄1^E1
2&, we can rewrite Eq.

~16! as

^E1
2&5h1E0

21~h21h3!E0
4, ~18!

where

h15
9e2

2

~ ē112e2!2
, h252

162e2
4x̄1

~ ē112e2!5
,

h35
18ē1e2x2@~113 f !ē1

21~426 f !ē1e21~426 f !e2
2#

~12p!~ ē112e2!5
.
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Because of the time dependence of the electric field@Eq.
~7!#, we can take one step forward to obtain the local elec
field in terms of the harmonics (Ev andE3v),

A^E1
2&5Evsin~vt !1E3vsin~3vt !, ~19!

where

Ev5Ah1E01
3

8

h21h3

Ah1

E0
3, ~20!

E3v52
1

8

h21h3

Ah1

E0
3. ~21!
n
by
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Similarly, based on Eq.~8!, we obtain the induced dipole

moment in terms of the harmonics (pv andp3v),

p̃/a35~pv /a3!sin~vt !1~p3v /a3!sin~3vt !, ~22!

where

pv /a35k1E01
3

4
~k21k3!E0

3, ~23!

p3v /a352
1

4
~k21k3!E0

3, ~24!

with
k15ee

ē12e2

ē112e2

, k25
3e2

2h1x̄1@ ē116 f ē11~226 f !e2#

~ ē112e2!3
,

k35
j 1x2@~113 f !ē1

3218f ē1
2e223~223 f !ē1e2

222~223 f !e2
3#

~ ē112e2!3
.
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d
-

In the above derivation, we have used an identity sin3(vt)
5(3/4)sin(vt)2(1/4)sin(3vt).

III. NUMERICAL RESULTS

For numerical calculations, we takex1(r )5x1(0)
1D(r /a), and other parameters: volume fractionf 50.09,
external field strengthE051, linear part of host dielectric
constante251.

The validation of using the DEDA is shown in Fig. 1. I
this figure, we investigate the linear local electric field
using a power-law gradation profile inside the particles, in
attempt to compare the DEDA with the first-principles a
proach. As expected, an excellent agreement is demonst
between the DEDA@Eq. ~2!# and the first-principles ap
proach@Eq. ~5!#. In addition, it is worth noting that, for a
linear gradation profile within the graded particles, the fir
principles approach holds as well@4#, and the excellent
agreement between the two methods can also be found@4#
~figure not shown here!.

Next, we discuss a power-law gradation profile@e1(r )
5A(r /a)n#; see Fig. 2. In this figure, the harmonics of loc
electric field and the induced dipole moment are investiga
as a function ofA for variousn. In this case, increasingA ~or

decreasingn) leads to increasingẽ̄1 ~namely, the equivalen
dielectric constant of the graded particle under considerat!
and in turn yields a decreasing local electric field inside
particle. Thus, either an increase inA or a decrease inn leads
to the weakening third-order harmonics (E3v and p3v), as
displayed in Fig. 2.

The x axes of Figs. 3 and 4 represent the slope~C! of a
linear gradation profile. It is because during the fabricat
n
-
ted

-

l
d

n
e

n

of graded spherical particles by using diffusion, the dielec
constant at the centere1(0) may vary slightly while that at
the grain boundary can change substantially.

For a linear gradation profile@e1(r )5e1(0)1C(r /a)#,
Fig. 3 shows the harmonics as a function ofC for various

FIG. 2. For a power-law gradation profilee1(r )5A(r /a)n: ~a!
fundamental and~b! third harmonics of the local electric field an
~c! fundamental and~d! third harmonics of the induced dipole mo
ment, plotted as a function ofA, for variousn. Parameters:x1(0)
50.1e0 , D50.1e0, andx250.
5-4
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e1(0). In this case, increasingC or e1(0) yields an increas-

ing ẽ̄1, and hence one obtains the decreasing local elec
field. As a result, the largerC or e1(0) leads to the weake
third-order harmonics (E3v andp3v); see Fig. 3.

FIG. 3. For the linear gradation profilee1(r )5e1(0)
1C(r /a): ~a! fundamental and~b! third harmonics of the loca
electric field and~c! fundamental and~d! third harmonics of the
induced dipole moment, plotted as a function ofC, for various
e1(0). Parameters:x1(0)50.1e0 , D50.1e0, andx250.

FIG. 4. Same as Fig. 3, but for variousx2. Parameters:x1(0)
50, D50, ande1(0)53e0.
03660
ic

Figure 4 displays the effect ofx2 on the harmonics, for a
linear gradation profile@e1(r )5e1(0)1C(r /a)#. Here, in-
creasingx2 leads to an increase of the local electric fie
inside the graded particle of interest. Therefore, the th
order harmonics (E3v andp3v) increase for increasingx2.

As mentioned above, asA andC increase, the equivalen
dielectric constant of the particle should be increased acc
ingly, which in turn yields a decreasing local electric fiel
and hence, in Figs. 2–4,Ev decreases for increasingA or C.
On the other hand, it is found that, in Figs. 2–4,pv increases
for increasingA or C which is, in fact, due to the increasin
effective dielectric constantẽe @refer to Eq.~8!#. Similarly,
this analysis works fairly well for understanding the effec
of n ande1(0) onEv andpv , as displayed in Figs. 2 and 3
However, increasingx2 can increase not only the local ele
tric field inside the particles, but also the effective dielect
constantẽe , and hence we observe increasingEv andpv , as
shown in Fig. 4.

In addition, we also discuss the effect of nonlinea
susceptibility gradation profiles~no figures shown here!. For
a linear gradation profilex1(r )5x1(0)1D(r /a), asx1(0)
~or D) increases, the third harmonics of both the elect
field and the induced dipole moment increases accordin
On the other hand, for a power-law gradation profilex1(r )
5B(r /a)m, increasingB ~or decreasingm) leads to increas-
ing third harmonics. To understand such results, we
again resort to the above analysis on the effect of the rele
parameters on the local field as well as the effective die
tric constant.

IV. DISCUSSION AND CONCLUSION

Here some comments are in order. We have investiga
the nonlinear ac responses of the graded material wh
linear/nonlinear graded particles are randomly embedded
linear/nonlinear host medium in the dilute limit. In fact, th
nonlinear differential effective dipole approximatio
~NDEDA! is valid for arbitrary gradation profiles. In particu
lar, based on the first-principles approach, the exact solu
is obtainable, not only for power-law profiles~see Sec. II A!,
but also for linear profiles~refer to Ref.@4#!.

In this work, the dielectric constant and nonlinear susc
tibility of the graded particles under consideration are re
frequency independent, and vary only in the radial directi
We can extend our results to complex, frequency-depend
susceptibilities. In fact, the NDEDA@8# was originally de-
rived for treating complex frequency-dependent susceptib
ties. By using the original NDEDA, the complex frequenc
dependent susceptibilities can be studied. That allows u
extend the present work to include an intrinsic dielectric d
persion in the graded particles.

As an extension, it is of particular interest to see wh
happens to the nonlinear ac responses of graded particl
anisotropic structures, like field-induced electrorheologi
fluids. In doing so, we can make use of the anisotro
Maxwell-Garnett approximation@13#, which allows us to
calculate the effective dielectric constant, both parallel a
perpendicular to the anisotropic axis. For details, please r
to Ref. @13#.
5-5
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To sum up, based on our recently established NDEDA,
have investigated the nonlinear ac responses of a comp
with linear/nonlinear graded spherical particles embedde
a linear/nonlinear host medium, and found the fundame
and third harmonic ac responses are sensitive to
dielectric-constant ~or nonlinear-susceptibility! gradation
profile within the particles. Again, for extracting the line
local electric field, the DEDA agrees very well with the firs
principles approach. In experiments, the graded particles
be made by using the method of diffusion. During the fab
cation process, one can measure the nonlinear ac respon
-

n-

32
. E
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the graded particles, so that one can monitor the grada
profiles in situ.
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